Does local ibandronate and/or pamidronate delivery enhances osseointegration? A systematic review

Article in Journal of Prosthodontics · October 2016

6 authors, including:

- **Fahim Vohra**
 King Saud University
 99 PUBLICATIONS 136 CITATIONS
 SEE PROFILE

- **Tariq Abduljabbar**
 King Saud University
 39 PUBLICATIONS 908 CITATIONS
 SEE PROFILE

- **Hans S Malmström**
 University of Rochester
 87 PUBLICATIONS 627 CITATIONS
 SEE PROFILE

- **Fawad Javed**
 University of Rochester
 175 PUBLICATIONS 1,784 CITATIONS
 SEE PROFILE

Some of the authors of this publication are also working on these related projects:

- Surface analysis and crack propagation for dental implant loss in patients. [View project](#)
Does Local Ibandronate and/or Pamidronate Delivery Enhance Osseointegration? A Systematic Review

Sergio Varela Kellesarian, DDS,1 Tariq Abduljabbar, DMSc,2 Fahim Vohra, MRD,2 Elham Gholamiazizi, BSc,3 Hans Malmstrom, DDS,1 Georgios E. Romanos, Prof.dr.med.dent,4,5 & Fawad Javed, PhD1

1Department of General Dentistry, Eastman Institute for Oral Health, University of Rochester, Rochester, NY
2Department of Prosthetic Dental Sciences, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
3Department of Engineering, Capital College, Penn State University Harrisburg, Middletown, PA
4Department of Oral Surgery and Implant Dentistry, Dental School, Johann Wolfgang Goethe, University of Frankfurt, Germany
5Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY

Keywords
Osseointegration; implants; bisphosphonates; ibandronate; pamidronate; topical administration.

Correspondence
Dr. Sergio Varela Kellesarian, Department of General Dentistry, Eastman Institute for Oral Health, 625 Elmwood Ave., University of Rochester, Rochester, NY 14620. E-mail: sergio_kellesarian@urmc.rochester.edu

The authors declare that they have no conflicts of interest related to the present study.

Research group funded by Deanship of Scientific Research at King Saud University (PRG-1437-38).

Accepted September 4, 2016

doi: 10.1111/jopr.12571

Abstract

Purpose: To our knowledge from indexed literature, the present study is the first one to systematically review the influence of local delivery of pamidronate (PAM) and/or ibandronate (IBA) on osseointegration enhancement. The aim of the present systematic review was to assess the efficacy of IBA and/or PAM local delivery (topically or coating on implants surfaces) in promoting osseointegration.

Materials and Methods: To address the focused question, “Does local IBA and/or PAM delivery enhances osseointegration?,” indexed databases were searched without time or language restrictions up to and including May 2016 using various combinations of the following keywords: “pamidronate,” “ibandronate,” “bisphosphonates,” “osseointegration,” and “topical administration.” Letters to the Editor, historic reviews, commentaries, case series, and case reports were excluded.

Results: Fifteen studies were included. Fourteen studies were performed in animals and 2 were clinical trials. One study reported an experimental model and a clinical trial in the same publication. Results from 12 experimental studies and 2 clinical studies reported improved biomechanical properties and/or osseointegration around implants with PAM and/or IBA. Two experimental studies showed that PAM and/or IBA did not improve osseointegration.

Conclusions: On experimental grounds, local IBA and/or PAM delivery seems to enhance osseointegration; however, from a clinical perspective, further randomized control trials are needed to assess the effectiveness of IBA and PAM in promoting osseointegration around dental implants.

Bone-to-implant contact (BIC) and primary stability are fundamental parameters that influence the overall success and survival of dental implants.1-4 However, additional parameters that may also influence BIC and osseointegration include implant surface roughness and coating.5 It is well known that collagen synthesis and osteogenic cell proliferation, attachment, and differentiation are significantly higher around rough-surfaced implants compared with machined-surfaced implants.5,6 Various techniques such as airborne-particle abrasion, acid etching, and heat treatment have been used to modify the implant surfaces to enhance osseointegration.7 It has also been reported that the systemic supplementation and/or local delivery (coatings or topical) of adjunctive therapies can improve osteogenesis and enhance new bone formation (NBF) around implants.8,10 One such adjunct therapy is local delivery of bisphosphonates (BPs), including topical application (BP-soaked morselized allografts or intracavity irrigation) and BP-coated implants.11-13 BPs are anticalcic drugs commonly used to treat resorptive skeletal disorders, such as bone metastasis, osteoporosis, Paget’s disease, and hypercalcemia associated with malignancies.14,15 Nitrogen-containing BPs such as zoledronate, alendronate, ibandronate (IBA), and pamidronate (PAM) are much more potent and act on the cholesterol pathway by inhibiting diphosphate synthase in the mavalonate pathway.16-18 BPs have a strong affinity to hydroxyapatite and calcium compounds and are able to induce osteoclastic inactivation, resulting in the inhibition of bone resorption.14 However, substantial differences among the pharmacological and
biological properties of BPs affect their binding to hydroxyapatite. In terms of speed and duration of action, IBA is a drug 50 times more potent that PAM. Clinical and experimental studies have explored the role of local IBA and/or PAM delivery (topically or coatings on implant surfaces) on the osseointegration and NBF around implants. Wermelin et al reported increased strength of fixation and biomechanical properties around titanium (Ti) and stainless steel (SS) screws coated with a fibrinogen, IBA, and PAM solution, compared with uncoated Ti and SS surfaces. Baas et al reported higher strength of fixation and NBF around implants coated with hydroxyapatite grafted with morselized allograft soaked in PAM solution compared to allograft without PAM. Similar results were reported in other studies. However, conflicting results have also been reported. Wermelin et al reported comparable BIC in SS screws coated with fibrinogen, PAM, and IBA, compared with uncoated SS screws. Likewise, Skoglund et al reported no significant difference in BIC and bone mineral density (BMD) around implants with and without IBA topical delivery. Therefore, the efficacy of IBA and PAM local delivery in terms of improving osseointegration seems debatable.

The aim of the present systematic review was to assess the efficacy of IBA and/or PAM local delivery (topically or coating on implant surfaces) on the osseointegration of implants.

Materials and methods

Participants, interventions, control, outcomes (PICO) principle

Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, a specific question was constructed according to the participants, interventions, control, outcomes (PICO) principle.

(P) Participants: Subjects must have undergone implant treatment.

(I) Types of interventions: The intervention of interest was the local delivery of PAM and/or IBA on osseointegration.

(C) Control intervention: Osseointegration without PAM or IBA local delivery.

(O) Outcome measures: BIC, NBF, bone volume/tissue volume (BV/TV), and/or biomechanical fixation around implants with and without PAM and/or IBA local delivery.

Focused question

The addressed focused question was “Does local IBA and/or PAM delivery enhance osseointegration?”

Eligibility criteria

The eligibility criteria were as follows: (1) clinical and experimental original studies; (2) inclusion of a control group (osseointegration around implants without local IBA and/or PAM delivery); and (3) intervention: effect of local IBA and/or PAM (topical or coating) on osseointegration. Articles available online in electronic form ahead of print were considered eligible for inclusion. Letters to the Editor, historic reviews, commentaries, case series, and case reports were excluded.

Literature search protocol

An electronic search without time or language restrictions was conducted up to May 2016 using PubMed (National Library of Medicine, Washington, D.C.), Google Scholar, Scopus, EMBASE, MEDLINE (OVID), and Web of Knowledge databases. The following Medical subject headings (MeSH) were used: (1) pamidronate, (2) ibandronate, (3) bisphosphonates, (4) osseointegration, and (5) topical administration, and combinations of 1 or 2 or 3 and 4; 1 or 2 or 3 and 5; and 3, 4, and 5. Other relevant non-MeSH words were used in the search process to identify articles discussing osseointegration parameters and IBA and/or PAM administration. These included: “local delivery,” “local administration,” “coating,” “coated,” “bone-to-implant contact,” and “new bone formation.”

Titles and abstracts of studies identified using the above-described protocol were screened by two authors (SVK and FJ) and checked for agreement. Full texts of studies judged by title and abstract to be relevant were read and independently evaluated for the stated eligibility criteria. Reference lists of potentially relevant original and review articles were hand searched to identify studies that remained unidentified in the previous step. Once again, the articles were checked for disagreement via discussion among the authors. Kappa scores (Cohen kappa coefficient) were used to determine the level of agreement between the two reviewers (Kappa score = 0.95). Figure 1 summarizes the literature search strategies according to the PRISMA guidelines.

Quality assessment

A quality assessment of included studies was performed using the Critical Appraisal Skills Program (CASP) Cohort Study Checklist. The CASP tool uses a systematic approach based on the following 12 specific criteria: (1) Study issue is clearly focused (effect of local IBA and/or PAM delivery on osseointegration); (2) Cohort is recruited in an acceptable way; (3) Exposure is accurately measured; (4) Outcome (osseointegration and/or NBF around implants) is accurately measured; (5) Confounding factors are addressed; (6) Follow-up is long and complete; (7) Results are clear; (8) Results are precise; (9) Results are credible; (10) Results can be applied to the local population; (11) Results fit with available evidence; and (12) There are important clinical implications. Each criterion received a response of either “Yes,” “No,” or “cannot tell.” Each study could have a maximum score of 12. CASP scores were used to grade the methodological quality of each study assessed in the present systematic review.

Results

Study selection

Two hundred ninety-eight potential articles were initially identified. In the first step 239 publications, which were either duplicates or did not answer the focused question, were excluded. In the second step 44 more articles were excluded. A total of 15 studies were included in the present systematic review and processed for data extraction, out of which 14 studies were performed in animals, and 2 studies were clinical trials in

Journal of Prosthodontics 00 (2016) 1–10 © 2016 by the American College of Prosthodontists
humans. Abtahi et al21 reported an animal model and a clinical trial in the same study.

Experimental studies

General characteristics

Fourteen experimental prospective studies21-34 were included. Male and female rats were used as study subjects in 10 studies21,23-25,27-30,32,33 and one study,26 respectively. In one study31 rodents’ sex was not reported. Yoshinari et al34 used male dogs, and in Baas et al’ study22 the dogs’ sex was unclear.

In six studies,21,24,26,30-33 a combination of IBA and PAM was immobilized into the implant surfaces. In five studies,22,25-27,34 PAM was delivered locally, out of which PAM-coated implants were used in four studies22,25-27,34 and morselized allograft soaked in PAM solution in one study.22 IBA was incorporated into the implant surfaces in three studies.26,28,29 In one study,23 the bone cavity was irrigated with IBA solution prior to implant placement.

In 13 studies,21-25,27-34 the role of IBA and/or PAM in the promotion of NBF around implants was assessed in healthy animals, whereas Gao et al36 assessed the effectiveness of PAM and IBA on osseointegration in rats with induced osteoporosis. In all studies,21-34 the follow-up period ranged between 5 hours and 12 weeks (Table 1).

Implant-related characteristics

Ti implants were used in seven studies,22,26-29,31,34 of which two28,29 used Ti dioxide nanotubes to serve as BP’s carriers. SS screws were used in seven studies.21,23-25,30,32,33 Eight studies21,22,24-26,28,29,34 reported the total numbers of implants placed in the subjects, ranging between 10 and 109. In six studies,23,27,30-33 the total number of implants was not reported. In 12 studies,21,23-33 implants were placed in tibiae. Baas et al22 and Yoshinari et al34 placed implants in dogs’ humeri and mandibles, respectively.

In 13 studies,22-34 implant dimensions (diameter \times length) ranged between 1 \times 2 and 3 \times 11 mm. Implant dimensions were not reported in Abtahi et al’s study.21 Screw-type and cylindrical implants were placed in nine studies21,23-25,28,30-33 and four studies,22,26,27,34 respectively. In one study,29 the implants’ shape was not reported. Nine studies22,24-26,29,32,34 used rough-surfaced implants, and machined-surfaced implants were used in two studies.23,27 Lee et al28 and Wermelin et al33 used implants with machined and roughened surfaces. One study21 did not report the implant surface characteristics (Table 2).

Osseointegration assessment

Six studies22,24-26,32,34 assessed osseointegration using histomorphometric analysis. In 12 studies,21,26,28-33 biomechanical testing was performed to assess the strength of newly formed bone around implants, of which four studies23,24,28,32
<table>
<thead>
<tr>
<th>Authors</th>
<th>Study subjects (mean age)</th>
<th>Study groups</th>
<th>Bisphosphonate dose and route of administration</th>
<th>Follow-up</th>
<th>Analysis methods</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implants with bisphosphonates-coated surfaces</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abtahi et al²¹</td>
<td>50 male rats (NA)</td>
<td>• Group 1: FIB</td>
<td>Groups 2, 3, 4, and 5: PAN + IBA solution (NA)</td>
<td>4 weeks</td>
<td>Pull-out test</td>
<td>Group 1 presented lower strength of fixation than groups 2, 3, 4, and 5.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group 2: FIB + PAM + IBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group 3: FIB + PAM + IBA + 5 kGy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group 4: FIB + PAM + IBA + 15 kGy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group 5: FIB + PAM + IBA + 25 kGy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agholme et al²⁴</td>
<td>60 male rats (NA)</td>
<td>• Group 1: FIB + PAM + IBA</td>
<td>Group 1: PAM solution 1 mg/ml, IBA solution 50 µg/ml</td>
<td>4 weeks</td>
<td>Pull-out test, Removal torque, HIST, BEM-SEM</td>
<td>Group 1 presented higher strength of fixation, BIC, and BV/TV than groups 2 and 3.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group 2: HA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group 3: Uncoated SS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andersson et al²⁵</td>
<td>109 male rats (2.1-month-old)</td>
<td>• Group 1: PAM + FIB</td>
<td>Group 1: PAM solution, 1 mg/ml, 279 ng/cm²; Group 2: ZOL solution, 15 mg/ml, 108 ng/cm²</td>
<td>2 and 6 weeks</td>
<td>Pull-out test, HIST</td>
<td>Group 1 presented higher strength of fixation and BMD than groups 3, 4, but lower than group 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group 2: ZOL + FIB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group 3: FIB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group 4: Uncoated SS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gao et al²⁶</td>
<td>40 female rats (NA)</td>
<td>• Group 1: O VX + HA</td>
<td>Group 2: PAM solution 1 mg/ml; Group 3: IBAL solution 1 mg/ml; Group 4: ZOL solution 1 mg/ml</td>
<td>12 weeks</td>
<td>DEXA, Micro-CT, HIST, push-out test</td>
<td>Groups 2 and 3 presented higher BIC, BV/TV, NBF and strength of fixation than group 1, but lower than group 4.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group 2: O VX + HA + PAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group 3: O VX + HA + IBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group 4: O VX + HA + ZOL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kajiwara et al²⁷</td>
<td>30 male rats (2.5-month-old)</td>
<td>• Group 1: Uncoated Ti</td>
<td>Group 3: PAM 3 mg/ml</td>
<td>4 weeks</td>
<td>Fluorescent labeling, SEM</td>
<td>Group 3 presented higher NBF than groups 1 and 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group 2: Ca-coated Ti</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group 3: Ca coated Ti + PAM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee et al²⁸</td>
<td>18 male rats (3-month-old)</td>
<td>• Group 1: Uncoated Ti</td>
<td>Group 3: 1 mg/ml IBA solution</td>
<td>2 and 4 weeks</td>
<td>Removal torque, Western Blot, micro-CT</td>
<td>Group 3 presented higher strength of fixation, NBF, BIC, and bone formation markers than groups 1 and 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group 2: AH Ti</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group 3: AH Ti + IBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nepal et al²⁹</td>
<td>8 male rats (NA)</td>
<td>• Group 1: AH Ti</td>
<td>Group 2: 1 mg/ml IBA solution</td>
<td>4 weeks</td>
<td>Histology, micro-CT, push-out test</td>
<td>Group 2 presented higher removal torque, BV/TV, BIC, and strength of fixation than group 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Group 2: AH Ti + IBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Table 1 Continued

<table>
<thead>
<tr>
<th>Authors</th>
<th>Study subjects (mean age)</th>
<th>Study groups</th>
<th>Bisphosphonate dose and route of administration</th>
<th>Follow-up</th>
<th>Analysis methods</th>
<th>Outcome</th>
</tr>
</thead>
</table>
| Tengvall et al³⁰ | 16 male rats (NA) | ● Group 1: FIB + PAM + IBA
● Group 2: Uncoated SS | Group 1: PAM solution 1 mg/ml, IBA solution 50 µg/ml | 2 weeks | Pull-out test | Group 1 presented higher pullout force and pullout energy than group 2. |
| Wermelin, Aspenberg, et al³¹ | 60 male rats (NA) | ● Group 1: FIB + PAM + IBA
● Group 2: Uncoated Ti | Group 1: PAM solution 1 mg/ml, IBA solution (NA) | 2 weeks | Pull-out test | Group 1 presented higher pullout force and pullout energy than group 2. |
| Wermelin, Suska, et al³² | 99 rats (2.5-month-old) | ● Group 1: FIB + PAM + IBA
● Group 2: FIB
● Group 3: Uncoated SS
● Group 4: Uncoated SS | Group 1: PAM solution 1 mg/ml, IBA solution 50 µg/ml, 380 ng/cm² (32 A) | 1 and 8 weeks | Histology, HIST, removal torque | Group 1 presented higher BA and removal torque than groups 2 and 3. Group 1 presented higher BIC than group 2, but similar to group 3. |
| Wermelin, Tengvall, et al³³ | 278 male rats (NA) | ● Group 1: FIB + PAM + IBA
● Group 2: FIB | Group 1: PAM solution 1 mg/ml, IBA solution 50 µg/ml | 5 hours, 4 days, 1 week, 2, 4, and 8 weeks | Pull-out test | Group 1 presented enhanced mechanical fixation compared with group 2. |
| Yoshinari et al³⁴ | 5 male dogs (12-month-old) | ● Group 1: Blasted
● Group 2: Blasted + CaP
● Group 3: Blasted + CaP + PAM | Group 3: PAM solution 10⁻² M | 4 and 12 weeks | Histology, HIST | Group 3 presented higher BIC than groups 1 and 2. |

Topical delivery of bisphosphonates

<table>
<thead>
<tr>
<th>Authors</th>
<th>Study subjects (mean age)</th>
<th>Study groups</th>
<th>Bisphosphonate dose and route of administration</th>
<th>Follow-up</th>
<th>Analysis methods</th>
<th>Outcome</th>
</tr>
</thead>
</table>
| Baas et al²² | 16 dogs (14.5-month-old) | ● Group 1: HA
● Group 2: HA + rhBMP-2
● Group 3: HA + PAM
● Group 4: HA + PAM + rhBMP-2 | Group 3: Morselized allograft soaked in 4 ml PAM (9 mg x ml x 3 minutes); Group 4: Morselized allograft soaked in 4 ml PAM (9 mg x ml x 3 minutes) and 0.45 mg rhBMP-2 | 4 weeks | Push-out, Histology, HIST | Groups 3 and 4 presented significantly higher strength of fixation and NBF compared with groups 1 and 2. |
| Skoglund et al²³ | 76 male rats (NA) | ● Group 1: SQ IBA
● Group 2: SQ SAL
● Group 3: Local IBA
● Group 4: Local SAL | Group 3: IBA solution 0.1 ml injected into the cavity | 2 weeks | Pull-out test, removal torque, histology | Group 3 presented higher pullout force and removal torque than group 4. No significant difference between groups in BIC and BMD. |

NA: Not available; FIB: Fibrinogen; PAM: Pamidronate; IBA: Ibandronate; kGy: Kilogray; HA: Hydroxyapatite; SS: Stainless steel; HIST: Histomorphometry; BEM: Backscattered electron microscopy; SEM: Scanning electron microscope; BIC: Bone-to-implant contact; BV/TV: Bone volume/tissue volume; ZOL: Zoledronate; BMD: Bone mineral density; HA: Hydroxyapatite; Ti: Titanium; SAL: Saline; OVX: Ovariectomized; DEXA: Dual energy X-ray absorptiometry; Micro-CT: Microcomputed tomography; NBF: New bone formation; Ca: Calcium; AH: Anodized and heat treated; BA: Bone area; ELISA: Enzyme-linked immunosorbent assay; CaP: Calcium phosphate; SQ: subcutaneous; rhBMP-2: recombinant human bone morphogenetic protein-2.
used removal torque analysis, three studies assessed bone healing capabilities with push-out test, and seven studies used pull-out test. In three studies, NBF around implants was assessed using 3D microcomputed tomography. In five studies, osseointegration was assessed using histology. Scanning electron microscopy and dual energy X-ray absorptiometry were used to assess NBF around implants in two studies and one study, respectively. In one study, fluorescence markers were used to track patterns of NBF and apposition. Lee et al used western blot analysis to evaluate the degree of mineralization based on levels of type I collagen and osteocalcin.

Main outcomes

Results from 12 studies reported improved biomechanical properties around implants with PAM and/or IBA local delivery (topical or coating) compared with implants without BP administration. In eight studies, local delivery of PAM and/or IBA resulted in enhanced BIC, NBF, BMD, and/or BV/TV. Lee et al reported significantly higher levels of type I collagen and osteocalcin expression in the bone tissue around Ti implants coated with IBA, compared with uncoated controls; However, Wermelin et al reported similar BIC around SS screws coated with fibrinogen and immobilized PAM with IBA, compared with uncoated SS screws. Likewise, Skoglund et al used western blot analysis to evaluate the degree of mineralization based on levels of type I collagen and osteocalcin.

Quality assessment

Quality assessment showed that all studies were conducted on experimental animals, and the total quality score ranged from 7 to 9. The most common shortcomings among the studies were short term and incomplete follow-up (up to 12 weeks) of the experimental groups and no assessment of confounder’s variables. Furthermore, as all studies were performed in animals, these results cannot apply to the human population. Overall, the quality of included experimental studies on the impact of IBA and/or PAM local administration on the osseointegration of implants was good, but limitations of short-term follow-up, lack of confounder’s assessment, and the need for clinical studies limit the clinical application of these study outcomes. Quality assessment of the individual papers is summarized in Table 4.

Clinical studies

General characteristics

Two clinical trials were included (Table 3). In Abtahi et al’s 2010 study, 5 patients with a mean age of 66 years were included. In 2012, Abtahi et al included 16 patients, with a mean age of 65 years. Both studies reported the number of Ti implants placed: 16 and 36 for the control groups (nontreated implants) and 5 and 16 implants for the test groups (BP-coated implants). In both studies, the implants were placed exclusively in maxilla, and each patient received at least one control implant and one test implant.

Osseointegration assessment

Two studies used resonance frequency analysis and radiographic examination (periapical and/or panoramic) to assess implant stability. Abtahi et al removed two of the BP-coated implants on bloc with an osteotome after 6 months to perform histological analysis.
Table 3 Clinical studies with local delivery of pamidronate, and/or ibandronate

<table>
<thead>
<tr>
<th>Authors</th>
<th>Number of patients (F/M)</th>
<th>Mean age in years (age range)</th>
<th>Implant location and dimensions</th>
<th>Study groups</th>
<th>Analysis methods</th>
<th>Follow-up</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abtahi et al²¹</td>
<td>5 (1/4)</td>
<td>66 (NA)</td>
<td>Maxilla 3.75 x 10</td>
<td>Group 1: 36 non-treated Ti implants;</td>
<td>RFA, histolog</td>
<td>6 months</td>
<td>No significant difference in MBL between groups 1 and 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Group 2: 5 treated Ti implants (PAM + IBA + FIB)</td>
<td>y, radiographs</td>
<td></td>
<td>Group 2 presented higher ISQ values than group 1.</td>
</tr>
<tr>
<td>Abtahi et al²⁶</td>
<td>16 (11/5)</td>
<td>65 (NA)</td>
<td>Maxilla 3.75 x 11.5</td>
<td>Group 1: 16 nontreated Ti implants;</td>
<td>RFA, radiographs</td>
<td>6 months</td>
<td>Group 2 presented higher ISQ values after 6 months than group 1. MBL was higher in group 1 than in group 2.</td>
</tr>
</tbody>
</table>

NA: Not available; F: Female; M: Male; PAM: Pamidronate; IBA: Ibandronate; FIB: Fibrinogen; Ti: Titanium; MBL: Marginal bone loss; ISQ: Implant stability quotient; RFA: Resonance frequency analysis.

Main outcome

The results of the two studies²¹,³⁵ showed that the implants coated with fibrinogen, IBA, and PAM presented higher implant stability quotient (ISQ) compared with uncoated implants after 6 months follow-up. In one study,²¹ no significant difference in marginal bone loss (MBL) around implants with or without BP and fibrinogen coating was observed after 6 months. Abtahi et al³⁵ reported lower MBL in implants coated with BPs and fibrinogen compared with uncoated control after 6 months. Histological analysis after 6 months showed osseointegration of the BP-coated implants, with mature and lamellar bone formed around the implant, and without signs of active resorption or necrosis.²¹

Quality assessment

The total quality score were 8 and 10. The most common shortcomings in both studies were the short term (up to 6 months), and the incomplete follow-up of the groups. Thus, on average, the quality of included studies was good, but the limitations of short-term follow-up limit the application of these study outcomes (Table 4).

Discussion

To our knowledge from indexed literature, the present study is the first to systematically review the influence of local delivery of PAM and/or IBA on osseointegration and NBF around implants. It is noteworthy that results from ~93% of the experimental studies²¹,²²,²⁴-³⁴ reported that local delivery of PAM and/or IBA enhanced osseointegration and NBF around implants. Therefore, it is tempting to speculate that local delivery of PAM and/or IBA promotes osseointegration; however, it is worth mentioning that several variables remained unaddressed in the studies.

First, it seems difficult to select the specific drug and dosage (PAM alone, IBA alone, or the combination of both) that might offer the most predictable outcome in terms NBF or BIC enhancement. For example, Agholme et al²⁴ and Tengwall et al³⁰ incorporated 1 mg/ml of PAM combined with 50 µg/ml IBA to SS screws precoated with fibrinogen, whereas Andersson et al²⁵ incorporated only 1 mg/ml PAM in SS screws precoated with fibrinogen, and Lee et al²⁸ used only 1 mg/ml IBA to coat anodized and heat-treated Ti implants. This reflects a lack of standardization regarding the methods and formulations to deliver IBA and/or PAM locally, and the need to be further optimized.

Second, different carriers such as fibrinogen,²¹,²⁴,²⁵,³⁰-³³ hydroxyapatite,²⁶ calcium,²⁷ and calcium phosphate³⁴ were used to bind BPs to the implants’ metal surfaces. Studies have shown that the use of hydroxyapatite and other calcium compounds are suitable methods for binding BPs to implant surfaces.³¹,³⁹,⁴⁰ However, the heterogeneity in the methods used among the included studies²¹,²⁴-³⁴ to incorporate BPs into the Ti and SS surfaces makes difficult to draw a conclusion regarding the ideal carrier.

Third, in two studies²⁵,²⁶ the efficacy of implants coated with PAM or IBA to improve osseointegration was compared with...
implants coated with zoledronate. In both studies, zoledronate groups presented higher strength of fixation and NBF compared with PAM and IBA groups. Zoledronate is a nitrogen containing BP, which exhibits the more potent action inhibiting bone resorption among all the BPs. It is hypothesized that other BPs applied locally might be more effective in enhancing NBF and BIC around implants than IBA and/or PAM are. Therefore, further studies comparing the local delivery efficacy of different BPs to improve osseointegration are needed. These parameters should be considered in a future protocol for the clinical use of local BPs in implantology.

It is noteworthy that the experimental studies were performed for a maximum 12-week follow-up period. Therefore, it remains unclear whether local delivery of IBA and/or PAM in patients receiving dental implants would increase BIC and contribute to long-term (at least 5 years or longer) success and survival of dental implants.

In Skoglund et al's study, the topical delivery of IBA did not improve BIC or BMD around SS screws. Some possible explanations can be hypothesized for these findings. First, the SS screws used had smooth surfaces. It is well known that rough-surfaced implants present higher proliferation of osteoprogenitor cells, and enhanced osseointegration compared with implants with turned surfaces. Second, the follow-up period was relatively short (2 weeks). It is speculated that a longer follow-up period may have resulted in an increment of NBF. Third, the delivery method used was an intracavity injection with 0.1 ml IBA solution. Intracavity injection with BP has been reported to increase NBF and osseointegration around implants; however, the dosage (5 ml) and the irrigation period was relatively short (2 weeks). It is speculated that a longer period may have resulted in an increment of NBF. Therefore, further studies comparing the local delivery efficacy of different BPs to improve osseointegration are needed. These parameters should be considered in a future protocol for the clinical use of local BPs in implantology.

From the literature reviewed, it is noteworthy that two studies were clinical trials, where 21 Ti implants were soaked in a solution of fibrinogen, IBA, and PAM, and placed in the maxilla of 21 patients. After 6 months, the implants coated with BPs presented higher ISQ compared with uncoated Ti implants. The authors of the present systematic review applaud the results of Abtahi et al; however, several limitations, such as the lack of an ideal BP formulation, dose, protocol, and/or method for delivery, short follow-up (6-month), and uncertainty regarding systemic effects of the local BP delivery, seem to have biased the results reported. Furthermore, of all the studies included, only one study was published after 2012, suggesting that this issue has ceased to be relevant to the current literature. Moreover, the significant heterogeneity among all the studies

<table>
<thead>
<tr>
<th>Authors</th>
<th>Item 1</th>
<th>Item 2</th>
<th>Item 3</th>
<th>Item 4</th>
<th>Item 5</th>
<th>Item 6</th>
<th>Item 7</th>
<th>Item 8</th>
<th>Item 9</th>
<th>Item 10</th>
<th>Item 11</th>
<th>Item 12</th>
<th>Total quality score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abtahi et al</td>
<td>Yes</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>7</td>
</tr>
<tr>
<td>Agholme et al</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>9</td>
</tr>
<tr>
<td>Andersson et al</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>9</td>
</tr>
<tr>
<td>Baas et al</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>9</td>
</tr>
<tr>
<td>Gao et al</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>9</td>
</tr>
<tr>
<td>Kajiwara et al</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>8</td>
</tr>
<tr>
<td>Lee et al</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>8</td>
</tr>
<tr>
<td>Nepal et al</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>8</td>
</tr>
<tr>
<td>Skoglund et al</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>8</td>
</tr>
<tr>
<td>Tengvall et al</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>8</td>
</tr>
<tr>
<td>Wermeilin, Aspengberg, et al</td>
<td>Yes</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Wermeilin, Suska, et al</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>9</td>
</tr>
<tr>
<td>Wermeilin, Tengvall, et al</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>8</td>
</tr>
<tr>
<td>Yoshinari et al</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>9</td>
</tr>
<tr>
<td>Abtahi et al</td>
<td>Yes</td>
<td>Cannot tell</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>8</td>
</tr>
<tr>
<td>Abtahi et al</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>10</td>
</tr>
</tbody>
</table>

Item 1: study issue is clearly focused; item 2: cohort is recruited in an acceptable way; item 3: exposure is accurately measured; item 4: outcome is accurately measured; item 5: confounding factors are addressed; item 6: follow-up is long and complete; item 7: results are clear; item 8: results are precise; item 9: results are credible; item 10: results can be applied to the local population; item 11: results fit with available evidence; item 12: there are important clinical implications.
(experimental and clinical) did not allow pooling of results and statistical analysis. In this regard, the conclusions of the studies included in the present systematic review should be interpreted with caution.

Conclusions

On experimental grounds, local IBA and/or PAM delivery seems to enhance osseointegration; however, from a clinical perspective, further randomized control trials are needed to assess the effectiveness of IBA and PAM in promoting osseointegration around dental implants.

References